Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.05.543759

ABSTRACT

High pro-inflammatory chemokine levels have been reported in blood and lung in patients with COVID-19. To investigate specific roles in pathogenesis, we studied the regulation of chemokine ligands and receptors in the lungs of 4-6-month-old wild type C57BL/6 mice infected with the MA10 mouse-adapted strain of SARS-CoV-2. We found that atypical chemokine receptor 1 (Ackr1, also known as Duffy antigen receptor for chemokines/DARC) was the most highly upregulated chemokine receptor in infected lung, where it localized to endothelial cells of veins and arterioles. In a screen of 7 leukocyte chemoattractant or chemoattractant receptor knockout mouse lines, Ackr1-/- mice were unique in having lower mortality after SARS-CoV-2 infection, particularly in males. ACKR1 is a non-signaling chemokine receptor that in addition to endothelium is also expressed on erythrocytes and Purkinje cells of the cerebellum. It binds promiscuously to both inflammatory CC and CXC chemokines and has been reported to control chemokine availability which may influence the shape of chemotactic gradients and the ability of leukocytes to extravasate and produce immunopathology. Of note, erythrocyte ACKR1 deficiency is fixed in sub-Saharan African populations where COVID-19 has been reported to result in low mortality compared to worldwide data. Our data suggest the possibility of a causal contribution of ACKR1 deficiency to low sub-Saharan COVID-19 mortality and identify ACKR1 as a possible drug target in the disease.


Subject(s)
COVID-19 , Lung Diseases
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.14.096727

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing an exponentially increasing number of coronavirus disease 19 (COVID-19) cases globally. Prioritization of medical countermeasures for evaluation in randomized clinical trials is critically hindered by the lack of COVID-19 animal models that enable accurate, quantifiable, and reproducible measurement of COVID-19 pulmonary disease free from observer bias. We first used serial computed tomography (CT) to demonstrate that bilateral intrabronchial instillation of SARS-CoV-2 into crab-eating macaques (Macaca fascicularis) results in mild-to-moderate lung abnormalities qualitatively characteristic of subclinical or mild-to-moderate COVID-19 (e.g., ground-glass opacities with or without reticulation, paving, or alveolar consolidation, peri-bronchial thickening, linear opacities) at typical locations (peripheral>central, posterior and dependent, bilateral, multi-lobar). We then used positron emission tomography (PET) analysis to demonstrate increased FDG uptake in the CT-defined lung abnormalities and regional lymph nodes. PET/CT imaging findings appeared in all macaques as early as 2 days post-exposure, variably progressed, and subsequently resolved by 6-12 days post-exposure. Finally, we applied operator-independent, semi-automatic quantification of the volume and radiodensity of CT abnormalities as a possible primary endpoint for immediate and objective efficacy testing of candidate medical countermeasures.


Subject(s)
COVID-19 , Coronavirus Infections , Lung Diseases , Adenocarcinoma, Bronchiolo-Alveolar
SELECTION OF CITATIONS
SEARCH DETAIL